Surname

Centre Number

2

Candidate Number

Other Names

GCE A level

1095/01

CHEMISTRY – CH5

A.M. WEDNESDAY, 19 June 2013

1¾ hours

FOR EXAMINER'S USE ONLY						
Section	Question	Mark				
	1					
А	2					
	3					
В	4					
	5					
TOTAL						

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a calculator;
- an 8 page answer book;
- a copy of the **Periodic Table** supplied by WJEC. Refer to it for any **relative atomic masses** you require.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

- Section A Answer all questions in the spaces provided.
- Section B Answer both questions in Section B in a separate answer book which should then be placed inside this question-and-answer book.

Candidates are advised to allocate their time appropriately between Section A (40 marks) and Section B (40 marks).

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

You are reminded that marking will take into account the Quality of Written Communication in all written answers.

SM*(S13-1095-01)

Examiner SECTION A Answer all questions in the spaces provided. Halogens and their compounds take part in a wide variety of reactions. Give the chemical name of a chlorine-containing compound of commercial or industrial (a)importance. State the use made of this compound. [1] Hydrogen reacts with iodine in a reversible reaction. *(b)* $H_2(g) + I_2(g) \rightleftharpoons$ 2HI(g)An equilibrium was established at 300 K, in a vessel of volume 1 dm³, and it was found that 0.311 mol of hydrogen, 0.311 mol of iodine and 0.011 mol of hydrogen iodide were present. Write the expression for the equilibrium constant in terms of concentration, K_c . (i) [1] Calculate the value of K_c at 300 K. (ii) [1] $K_c = \dots$ (iii) What are the units of K_c , if any? [1] Equilibria of H_2 , I_2 and HI were set up at 500 K and 1000 K and it was found that (iv) the numerical values of K_c were 6.25×10^{-3} and 18.5×10^{-3} respectively. Use these data to deduce the sign of ΔH for the forward reaction. Explain your reasoning. [3]

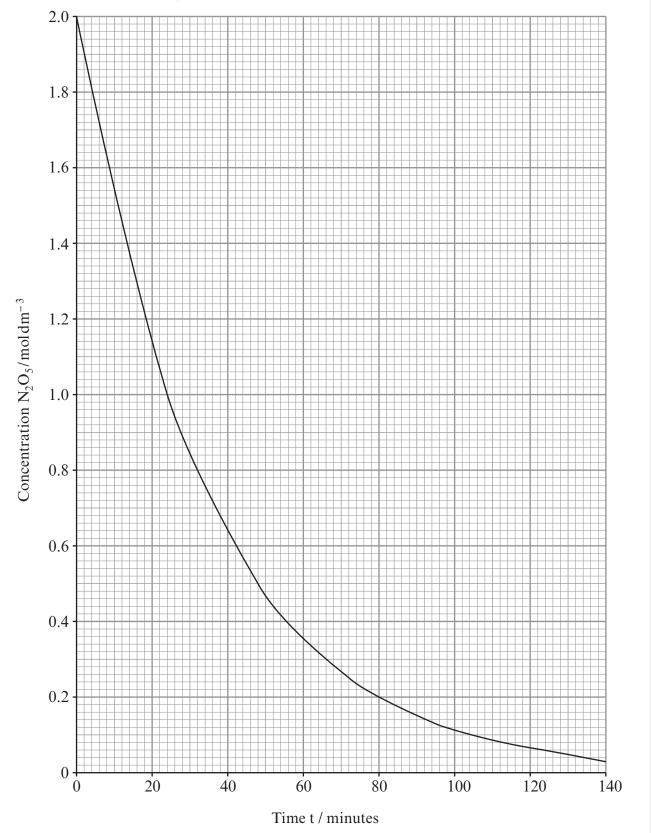
2

1.

only

When concentrated hydrochloric acid is added to a pink aqueous solution of cobalt(II) (c)chloride, the colour changes to blue. Cobalt takes part in an equilibrium reaction. $[Co(H_2O)_6]^{2+}(aq) + 4Cl^{-}(aq) \rightleftharpoons [CoCl_4]^{2-}(aq) + 6H_2O(l)$ What is the oxidation state of cobalt in $[CoCl_4]^{2-}$? [1] (i) (ii) What type of bonding is present in $[CoCl_4]^{2-}$? [1] (iii) Use the equation to identify the ions responsible for the pink and blue colours described above. Explain why the colour change occurs when concentrated hydrochloric acid is added to the pink solution. [3] Draw diagrams to clearly show the shape of the $[Co(H_2O)_6]^{2+}$ ion and the $[CoCl_4]^{2-}$ (iv) ion. [2] $[CoCl_4]^{2-}$ $[Co(H_2O)_6]^{2+}$ Total [14]

(1095-01)


 $\begin{array}{c}109.5\\0.10\,0.03\end{array}$

Examiner only

2. Nitrogen forms a variety of oxides including dinitrogen pentoxide, N_2O_5 , which can $\Big|_{only}^{Examiner}$

 $2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$

The rate at which this decomposition occurs can be followed by measuring the change in concentration of N_2O_5 . A graph of the results of this decomposition is shown below.

(1095-01)

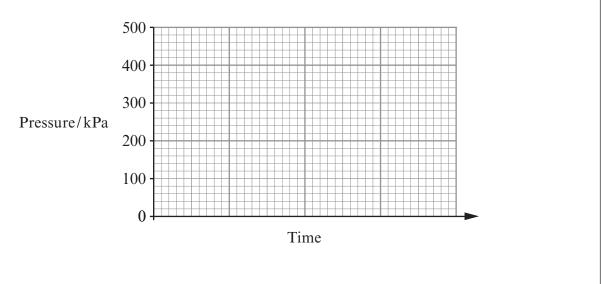
(a)	(i)	Use the graph to determine the rate of reaction, in moldm ⁻³ min ⁻¹ , at 40 minutes. Show clearly on the graph, how you determined your answer.		aminer only
	(ii)	Rate after 40 minutes = $mol dm^{-3} minutes$ Explain why the rate of reaction is lower at t = 60 minutes than it was t = 40 minutes.		
(b)	(i)	Use the graph to show that the reaction is first order with respect to N_2O_5 . Explain how you reached your conclusion.	[2]	1095 010005
	(ii)	Write the rate equation for the reaction.	[1]	
	(iii)	Find the value of k in the rate equation and state its units.	[2]	
		$Value of k = \dots$		
		<i>Units</i> =		

Turn over.

Examiner only

(iv) Two students suggested possible mechanisms for the decomposition of N_2O_5 .

 $2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$


Student A	$N_2O_5 \xrightarrow{slow} NO_2 + NO + O_2$				
	NO + $O_2 \xrightarrow{\text{fast}} NO_2 + \frac{1}{2}O_2$				

Student B

$$4NO + 2O_2 \xrightarrow{fast} 4NO_2$$

State, with a reason, which student's suggested mechanism is more likely to be correct. [1]

(c) The progress of the reaction could have been followed by monitoring changes in pressure. On the axes below sketch the results expected if the initial pressure of the N_2O_5 was 100 kPa and the reaction reached completion. [2]

Total [11]

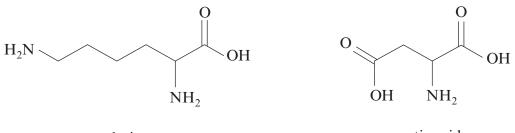
BLANK PAGE

7

3. *Read the passage below and then answer the questions in the spaces provided.*

Acids Through The Ages

The ancient Greeks started to classify materials as salt-tasting, sweet-tasting, sour-tasting and bitter-tasting. In this classification acids were those considered to be sour-tasting – the name comes from the Latin *acere*.


- Taste continued to be an important consideration even today many people would think of the sour taste of a lemon as being typical of an acid. However it was found that, as well as taste, these compounds had other properties in common. The dye litmus had been extracted from lichens and it was found that acids changed the colour of this to red. They also corroded metals.
- Many acids were identified citric acid could be extracted from citrus fruit and methanoic acid could be extracted, by distillation, from red ants. Methanoic acid used to be called formic acid since the biological term for an ant is *formica*.

The modern classification of acids is based on the theory suggested by Lowry and Brønsted although more recent classifications, based on electron pair donation, have been suggested by Lewis.

15 Using the Lowry-Brønsted classification both citric acid and methanoic acid are described as being weak. For methanoic acid, HCOOH, the value of the acid dissociation constant, K_a , is 1.75×10^{-4} mol dm⁻³.

Acids have a wide variety of uses in modern chemistry. They can, for example, be used as catalysts in hydrolysis reactions and work is currently being done to investigate the possibility

- 20 of obtaining biofuels by the hydrolysis of farm waste such as straw. In some situations however acids can destroy catalytic effects. The tertiary structure and therefore the shape of the active sites of some enzyme catalysts can be maintained by ionic attractions. This could arise, for example, when the enzyme involves the amino acids lysine and aspartic acid. The NH_2 on the lysine can be protonated to give a positive ion, whilst the COOH can be deprotonated to give
- 25 a negative ion. Attraction between oppositely charged ions holds the shape but if the pH is altered and one of the charges is lost the shape can change and the enzyme becomes denatured.

lysine

aspartic acid

The possible alteration of the shapes of molecules in biological systems means that it is important that the pH of, for example shampoos, is maintained within a small range. For best results shampoo should stay at a pH just below 7.

- End of passage -

Examiner The article (line 29) states that it is important to maintain the pH of shampoo within a (*e*) small range. What name is given to a system designed to maintain pH within a small range? (i) [1] (ii) The pH of a shampoo is maintained within a small range by using a weak acid, RCOOH, and its sodium salt, RCOONa. Explain how this mixture maintains pH within a small range. [3]

Total [15]

only

Total Section A [40]

(1095-01)

BLANK PAGE

SECTION B

Answer both questions in the separate answer book provided.

4. (a) Electrochemical cells are used as power sources in many everyday applications. To decide what to use in a cell, it is necessary to know the standard electrode potential for electrodes. This is measured using a standard hydrogen electrode as a reference standard.

Draw a labelled diagram of the apparatus you would use to measure the standard electrode potential of an Fe^{3+}/Fe^{2+} electrode. [5]

- (b) Vanadium is a transition metal that can form compounds with a variety of oxidation states. Zinc however forms compounds with an oxidation state of +2 only.
 - (i) Why can transition elements form compounds with a variety of oxidation states? [1]
 - (ii) Give the electronic structure of Zn. [1]
 - (iii) State why zinc forms Zn^{2+} . [1]

You will need the standard electrode potentials in the table below to answer part (c).

Oxidation state of vanadium at start of reaction	Reaction	E [⇔] /V
+5	$VO_3^{-}(aq) + 4H^+(aq) + e \implies VO^{2+}(aq) + 2H_2O(l)$	+1.00
+4	$VO^{2+}(aq) + 2H^{+}(aq) + e \rightleftharpoons V^{3+}(aq) + H_2O(l)$	+0.34
+3	$V^{3+}(aq) + e \rightleftharpoons V^{2+}(aq)$	-0.26
+2	$V^{2+}(aq) + 2e \rightleftharpoons V(s)$	-1.13
	$Zn^{2+}(aq) + 2e \rightleftharpoons Zn(s)$	-0.76
	$Cu^{2+}(aq) + 2e \rightleftharpoons Cu(s)$	+0.34

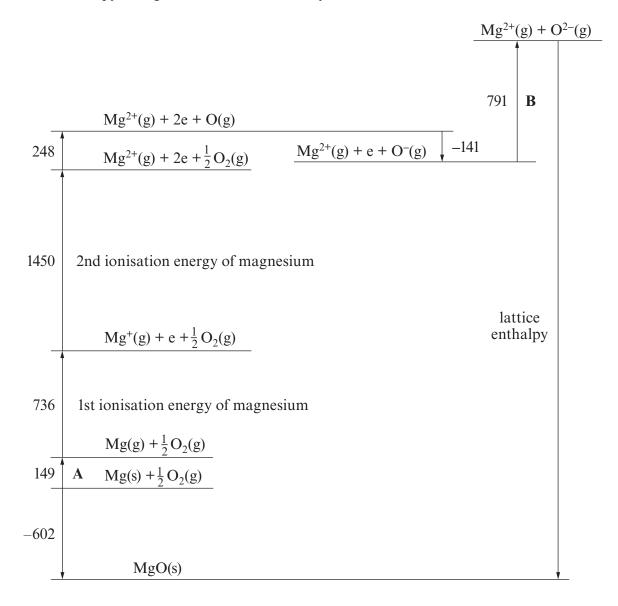
- (c) Vanadium(V)(aq), as VO_3^- , is yellow and can be reduced by zinc and aqueous acid producing a series of coloured solutions until the reduction stops with the formation of a violet solution. The reducing agent involves the $Zn^{2+}(aq)/Zn(s)$ equilibrium.
 - (i) State the identity of the violet vanadium-containing solution produced in this reduction. Use standard electrode potentials to explain your answer. [3]
 - (ii) What is the standard potential of a cell formed from a standard $Zn^{2+}(aq)/Zn(s)$ electrode and a standard $Cu^{2+}(aq)/Cu(s)$ electrode? [1]
 - (iii) Write the equilibrium equation for the change occurring at the zinc electrode showing the direction in which the reaction proceeds. [1]
 - (iv) Use Le Chatelier's principle to predict the effect on the electrode potential of the zinc electrode of increasing the concentration of $Zn^{2+}(aq)$ in the electrode. Explain your answer. [2]
- (d) Halogens can also form compounds with a variety of oxidation states. Some of these including compounds of iodate(V), IO₃⁻, behave as oxidising agents.

A student was investigating the reaction that occurs when iodate(V) oxidises iodide ions to produce iodine. Two possible equations were suggested.

$IO_3^- + 6H^+ + 5I^- \longrightarrow$	$3I_2 + 3H_2O$	equation 1
$IO_3^- + 4H^+ + 4I^- \longrightarrow$	$IO^- + 2H_2O + 2I_2$	equation 2

He prepared a solution of potassium iodate(V) by dissolving 0.978 g of KIO₃ in 250 cm³ of solution. He pipetted 25.0 cm³ of this solution into a conical flask, added excess potassium iodide and titrated the iodine produced with 0.100 mol dm⁻³ sodium thiosulfate solution, Na₂S₂O₃. A volume of 27.40 cm³ of this solution was needed to react with the iodate(V).

The equation for the reaction of thiosulfate with iodine is shown below.


 $2S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I^-$

- (i) Calculate the number of moles of thiosulfate used to react with the iodine. [1]
- (ii) Deduce the number of moles of iodine present in the 25.0 cm³ sample. [1]
- (iii) Calculate the number of moles of KIO_3 present in 250 cm³ of the original solution and hence the number of moles present in 25.0 cm³. [1]
- (iv) Use your results from (ii) and (iii) to deduce which of equation 1 and equation 2 suggested above, correctly shows what happens when iodate(V) ions oxidise iodide ions. Show, by calculation, how you came to this conclusion.

Total [20]

- 5. Magnesium oxide, MgO, is a white solid with a very high melting temperature and it is used as the refractory lining in furnaces.
 - (a) The following Born-Haber cycle shows the enthalpy changes involved in the formation of magnesium oxide.

All enthalpy changes are in kJ mol⁻¹. The cycle is not drawn to scale.

(i) What is the name given to the enthalpy change labelled A? [1]
(ii) State why the second ionisation energy of magnesium is greater than its first ionisation energy. [1]
(iii) Suggest why the second electron affinity of oxygen, labelled **B**, is positive. [1]
(iv) Calculate the value of the lattice enthalpy for magnesium oxide. [2]

(b) Many metal oxides can be reduced to the metal by carbon monoxide. The equation for the reduction of magnesium oxide is given below.

$$MgO(s) + CO(g) \longrightarrow Mg(s) + CO_2(g)$$

The conditions under which reactions will occur can be predicted using enthalpy and entropy changes. The entropies of the substances involved in this reaction are shown in the table.

Substance	MgO(s)	CO(g)	Mg(s)	CO ₂ (g)	
Entropy/JK ⁻¹ mol ⁻¹	26.9	197.7	32.7	213.7	

- (i) Suggest a reason why the entropies of carbon monoxide and carbon dioxide are much higher than those of magnesium and magnesium oxide. [1]
- (ii) Calculate the entropy change in this reaction.
- (iii) The enthalpy change, ΔH , for the reduction of magnesium oxide is 318.0 kJ mol⁻¹. Calculate the minimum temperature at which this reduction could occur. [3]
- (c) Magnesium oxide, MgO, lead(II) oxide, PbO, and aluminium oxide, Al_2O_3 , all react with dilute acids to form aqueous ions $Mg^{2+}(aq)$, $Pb^{2+}(aq)$ and $Al^{3+}(aq)$.

Suggest tests that would enable you to distinguish between solutions containing one of each of these ions. You should include the expected result for **each** test and are advised to record your tests and expected results in a table. [5]

QWC[2]

[1]

- (d) Aluminium chloride, $AlCl_3$, can be used to produce compounds including the chloroaluminate(III) ion, $AlCl_4^-$.
 - (i) Draw a dot and cross diagram to show the electron arrangement in the AlCl₄⁻ ion.
 You should show outer electrons only. [1]
 - (ii) Give one industrially important use in which the $AlCl_4^-$ ion is involved. State the role of the ion in this use. [2]

Total [20]

Total Section B [40]

END OF PAPER

GCE A level

CHEMISTRY – CH5 Periodic Table

A.M. WEDNESDAY, 19 June 2013

			▲		ŭ	e	c			
	0	4.00 He Helium	20.2 Ne 10 10	Ar Ar Ar Ar Br Argon 18	83.8 Kr 36	131 Xe Xenon 54	(222) Rn Radon 86			
	7		19.0 F 9	35.5 Cl Chlorine	79.9 Br 35	127 I S3	(210) At Astatine 85		175 Lu Lutetium 71	(257) Lr Lawrencium 103
	9		16.0 O 8		79.0 Se 34	128 Te Tellurium 52	(210) Po Polonium 84		${{173}\atop{{ m Yb}}}{{ m Yb}\atop{70}}$	(254) No Nobelium 102
	S	p B	$\stackrel{14.0}{N}$ Nitrogen	31.0 Phosphorus 15	74.9 As Arsenic 33	122 Sb Antimony 51	209 Bi 83		169 Tm Thulium 69	(256) Md Mendelevium 101
	4		12.0 C 6	28.1 Si 14	72.6 Germanium 32	119 Sn 50	207 Pb Lead 82		167 Er 68	(253) Fm Fermium 100
	ε		10.8 B 5	27.0 A1 Aluminium 13	69.7 Ga Gallium 31	115 In Indium 49	204 T1 Thallium 81		165 Ho 67	(254) Es Einsteinium 99
LE				Î	65.4 Zn 30	112 Cd Cadmium 48	201 Hg Mercury 80		163 Dy Dysprosium 66	Cf Cf Salifornium 98
HE PERIODIC TABLE					63.5 Cu 29 29	108 Ag Silver 47	197 Au Gold 79	f Block	159 Tb Terbium 65	(245) Bk Berkelium 97
DIC					58.7 Ni Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	f Bl	157 Gd Gadolinium 64	(247) Cm Scurium 96
ERIO				-	58.9 Co Cobalt 27	103 Rh Rhodium 45	$\begin{array}{c} 192 \\ \mathbf{Ir} \\ \mathbf{Iridium} \\ 77 \end{array}$		(153) Eu Europium 63	(243) Am Americium 95
IE PI	roup	Key	- atomic nass atomic number	Block	55.8 Fe Iron 26	101 Ru Ruthenium 44	190 Osmium 76		150 Sm 62	(242) Pu Plutonium 94
ΗT	Gr		A _r Symbol Name	d Bl	54.9 Mn Manganese 25		186 Re Rhenium		(147) Promethium 61	(237) Np Neptunium 93
					52.0 Cr Chromium 24	95.9 MO Molybdenum 42	184 W Tungsten 74		144 Nd Neodymium 60	238 U Uranium 92
					50.9 V Vanadium 23	92.9 Nb Niobium 41	181 Ta Tantalum 73		141 Praecodynium 59	(231) Pa Protactinium 91
					47.9 Ti Titanium 22	91.2 Zr Zirconium 40	Hf Hafnium 72		L40 Ce S8	232 Th Thorium 90
				\	45.0 Sc 21	88.9 Y Yttrium 39		Actinium 89	 Lanthanoid elements 	Actinoid elements
	2	s Block	9.01 Be Beryllium	24.3 Mg Magnesium	40.1 Ca Calcium 20	87.6 Sr 38	137 Ba Barium 56	(226) Ra Radium 88	 Lant elerr 	 Actinoid elements
	—		6.94 Li Lithium 3	23.0 Na Sodium	39.1 K Potassium 19	85.5 Rb Rubidium 37	133 Cs 55	(223) Fr Francium 87		
		iod 1	2	ξ	4	S	9			
		Period	© WJEC C	BAC Ltd.	(1095-01-	A)				